Kato's square root problem in Banach spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Kato’s Square Root Problem in Banach Spaces

Abstract. Let L be an elliptic differential operator with bounded measurable coefficients, acting in Bochner spaces Lp(Rn;X) of X-valued functions on Rn. We characterize Kato’s square root estimates ‖ √ Lu‖p h ‖∇u‖p and the H-functional calculus of L in terms of R-boundedness properties of the resolvent of L, when X is a Banach function lattice with the UMD property, or a noncommutative Lp spac...

متن کامل

The cluster value problem for Banach spaces . ∗ †

The main result is that the cluster value problem in separable Banach spaces, for the Banach algebras Au and H ∞, can be reduced to the cluster value problem in those spaces which are `1 sums of a sequence of finite dimensional spaces.

متن کامل

Nonlocal Cauchy Problem for Impulsive Differential Equations in Banach Spaces

where A is the infinitesimal generator of a strongly continuous semigroup of bounded linear operators T (t) on a Banach space X; f : [0, b]×X → X; 0 < t1 < t2 < · · · < tp < tp+1 = b; Ii : X → X, i = 1, 2, · · · , p are impulsive functions and g : PC([0, b];X) → X . During recent years, the impulsive differential equations have been an object of intensive investigation because of the wide possi...

متن کامل

Norm optimization problem for linear operators in classical Banach spaces

We prove a linear operator T acting between lp-type spaces attains its norm if, and only if, there exists a not weakly null maximizing sequence for T . For 1 < p 6= q we show that any not weakly null maximizing sequence for a norm attaining operator T : lp → lq has a norm-convergent subsequence. We also prove that for any fixed x0 in lp, the set of operators T : lp → lq that attain their norm a...

متن کامل

Kneser - type theorem for the Darboux problem in Banach spaces

In this paper we study the Darboux problem in some class of Banach spaces. The right-hand side of this problem is a Pettis-integrable function satisfying some conditions expressed in terms of measures of weak noncompactness. We prove that the set of all local pseudo-solutions of our problem is nonempty, compact and connected in the space of continuous functions equipped with the weak topology.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Functional Analysis

سال: 2008

ISSN: 0022-1236

DOI: 10.1016/j.jfa.2007.10.006